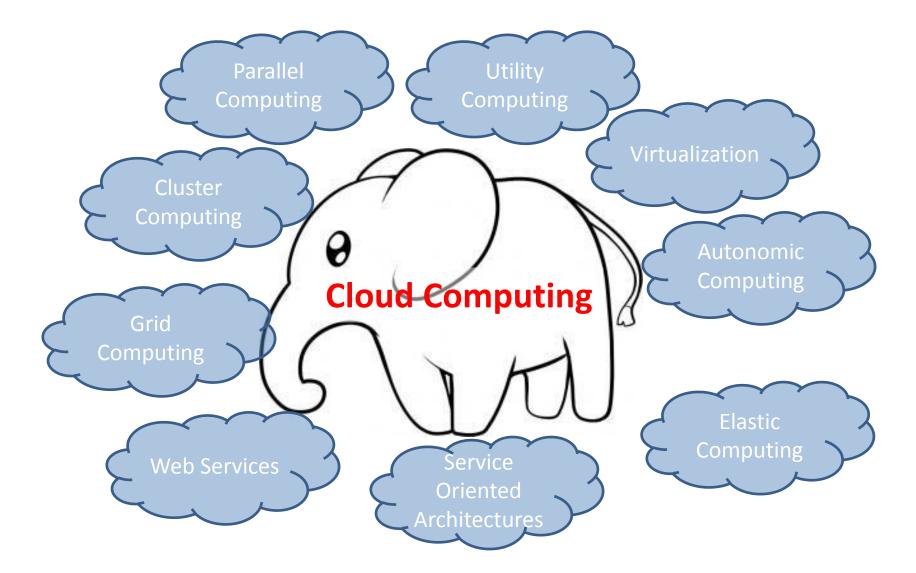
HOT Topics in Computer Science (HOT-T-CS)

Mobile Cloud Computing Architectures


Pradipta De pradipta.de@sunykorea.ac.kr

Cloud Computing

A quote from Oracle CEO Larry Ellison

"The interesting thing about cloud computing is that we've redefined cloud computing to include everything that we already do.... I don't understand what we would do differently in the light of cloud computing other than change the wording of some of our ads."

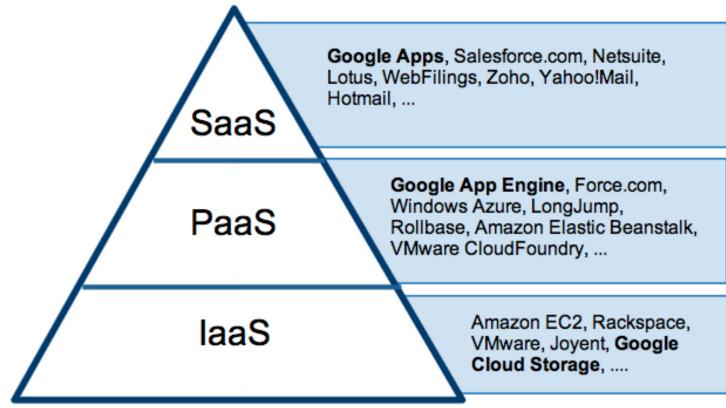
Cloud Computing

Cloud Computing Old Wine in New Bottle ?

Grid Computing

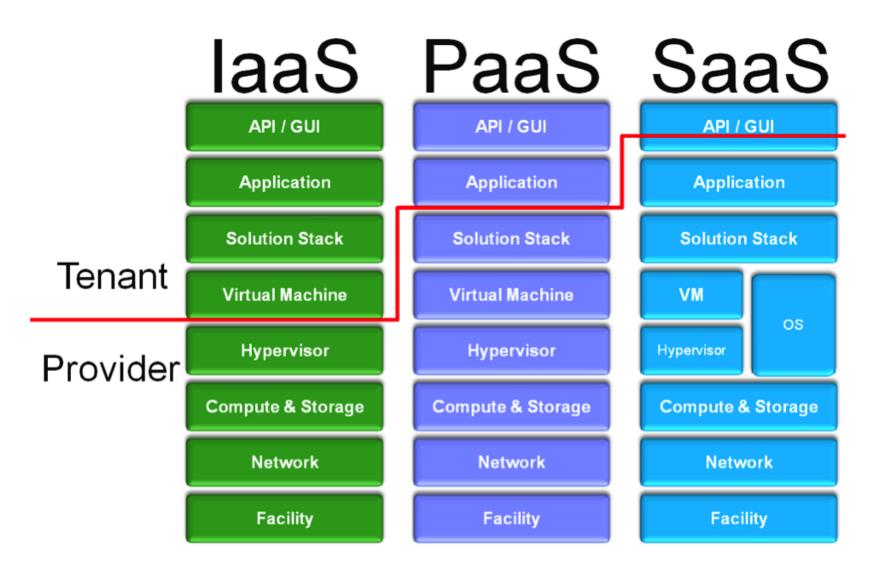
Utility

Computing

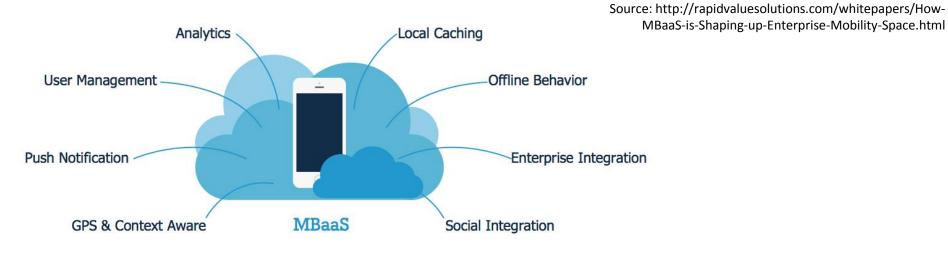

Harness the compute power of geographically distributed heterogeneous machines which are sitting idle

A business model to charge for resource Use a time on a supercomputer and pay for usage

Cloud Computing A superset of functionalities Offers a complete environment starting from low-level infrastructure to managed applications Uses similar charging concepts like Utility computing, but with greater variations


Service Models

Cloud Computing as Gartner Sees It



Source: Gartner AADI Summit Dec 2009

Management Model

Mobile Backend as a Service

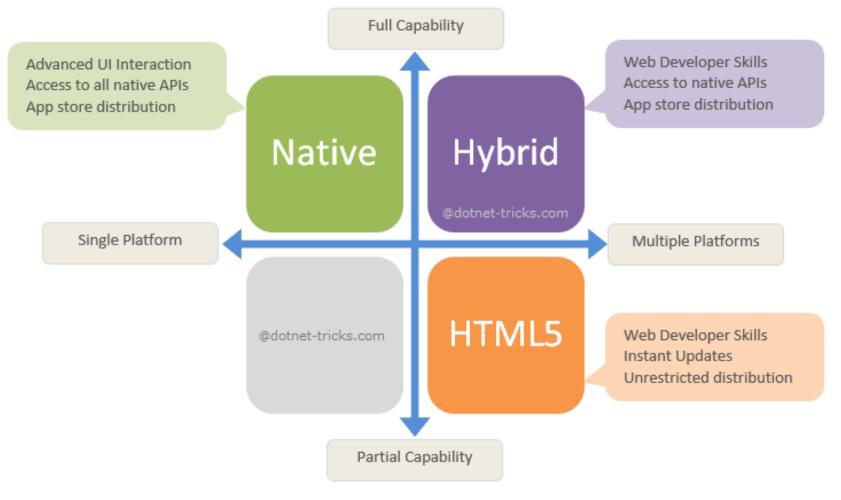
What	 Provides mobile application developers a way to connect their application to backend cloud storage and processing
Why	 Abstract away complexities of launching and managing own infrastructure Focus more on front-end development instead of backend functions
When	 Multiple Apps, Multiple Backends, Multiple Developers Multiple Mobile Platforms, Multiple Integration, Multiple 3rd Party Systems & Tools
How	 Meaningful resources for app development acceleration – 3rd party API, Device SDK's, Enterprise Connectors, Social integration, Cloud storage

Mobile Backend as a Service

- Amazon Silk browser
 - Split browser
- Apple Siri

Speech recognition in cloud

- Apple iCloud
 - Unlimited storage and sync capabilities
- Image recognition apps on smartphones useful in developing augmented reality apps on mobile devices
 - Augmented reality app using Google Glass

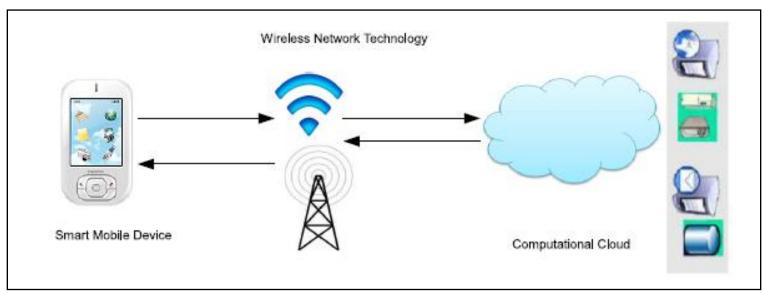

App Models: Native, Web-based, Hybrid

- Developing applications for mobile platforms is challenging
 - Heterogeneity: form factors, hardware platforms, limitations on connectivity, battery, resources
- MBaaS aims to hide the heterogeneity

□ Native Apps: Build for specific platforms, like Android, iOS, Blackberry

- □ Web-based: Mobile optimized websites that currently uses HTML5 → crossplatform mobile applications
 - □ HTML5 provides access to some native device features, like GeoLocation, camera, calendar, etc.)
- □ Hybrid Apps: embed HTML5 apps within native containers → some benefits of both worlds

Comparison of App Models



Source: www.dotnet-tricks.com

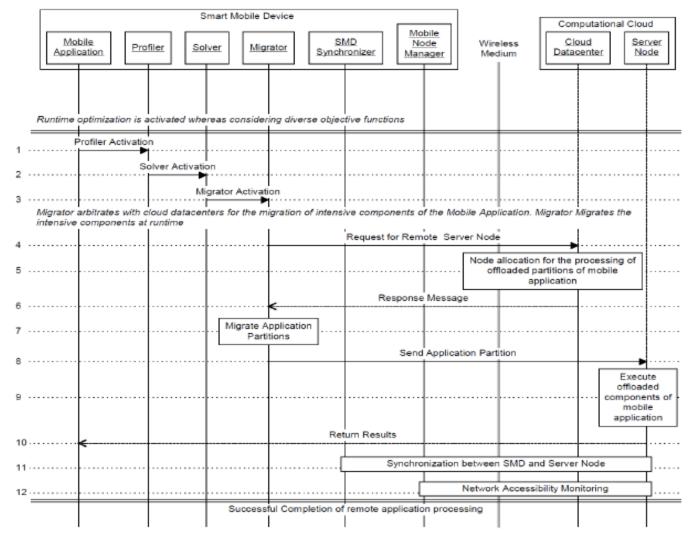
What is still missing ?

- Battery capacity on smartphones is limited
 - Applications are not designed with the objective of optimal power consumption
- Smartphone processors are not fast → time to compute can be high → bad user experience
- How can we use Cloud Computing to overcome these limitations ?

Mobile Cloud Computing

Source: Shiraz, Muhammad, et al. "A review on distributed application processing frameworks in smart mobile devices for mobile cloud computing." Communications Surveys & Tutorials, IEEE 15.3 (2013): 1294-1313.

Mobile Cloud Computing is a framework to augment a resource constrained mobile device to execute parts of the program on cloud based servers

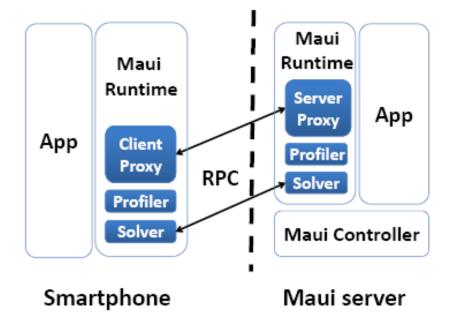

Pros:

- Saves battery power
- Makes execution faster

Cons:

- Must send the program states (data) to the cloud server → consumes battery
- Network latency can lead to execution delay

Typical MCC workflow



Source: Shiraz, Muhammad, et al. "A review on distributed application processing frameworks in smart mobile devices for mobile cloud computing." Communications Surveys & Tutorials, IEEE 15.3 (2013): 1294-1313.

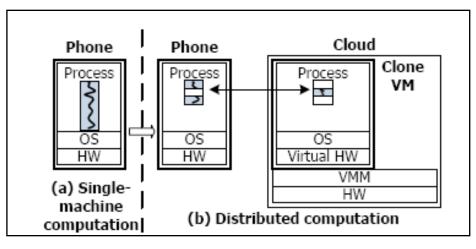
Key challenges ?

- MCC requires dynamic partitioning of an application to optimize
 - Energy saving
 - Execution time
- Requires a software (middleware) that decides at app launch which parts of the application must execute on the mobile device, and which parts must execute on cloud
 - This is a classic optimization problem

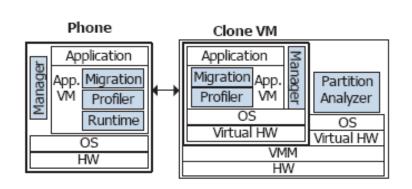
[1] MCC Systems: MAUI

MAUI server is the cloud component.

The framework has the necessary software modules required in the workflow.


- MAUI enables the programmer to produce an initial partition of the program
 - Programmer marks each method as "remoteable" or not
 - Native methods cannot be remoteable
- MAUI framework uses the annotation to decide whether a method should be executed on cloud server to save energy and time to execute

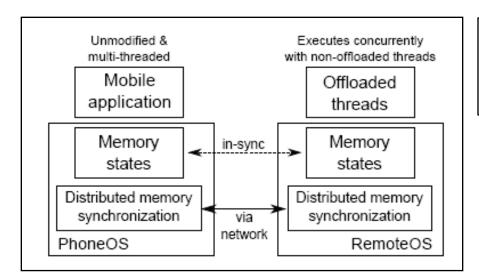
[2] MCC Systems: MAUI


- Smartphone processors are ARM based, cloud servers are x86 → How to run same program code on different architectures
 - Uses Microsoft .NET Common Language Runtime
 - MAUI apps are written in C#
 - MAUI server has copies of the executable
 - Only program states must be sent to server to execute a method

MCC Systems: CloneCloud

CloneCloud system does not require the developer to annotate the methods as remoteable → it can work on unmodified applications (or binaries)
 CloneCloud transforms a single machine execution into a distributed execution optimized for various factors (network connection, processing speeds, application computing patterns)

CloneCloud Model


CloneCloud Architecture

CloneCloud uses static analysis of the code, and partitions at the thread level

MCC Systems: COMET

COMET: Code Offload by Migrating Execution Transparently

- Works on unmodified applications (no source code required)
- Allows threads to migrate between machines depending on workload
- It implements a Distributed Shared Memory (DSM) model for the runtime engine
 - DSM allows transparent movement of threads across machines
 - In computer architecture, distributed shared memory (DSM) is a form of memory architecture where the (physically separate) memories can be addressed as one (logically shared) address space

Requires only program binaries Execute multi-threaded programs correctly Improve speed of computation

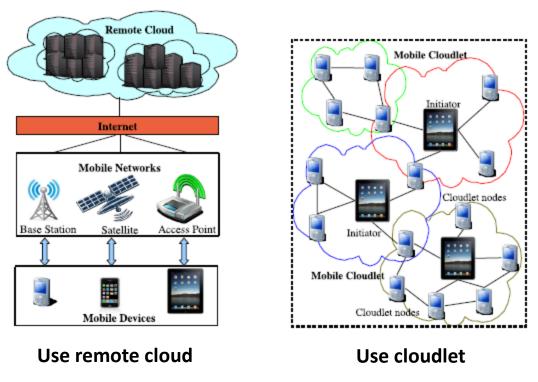
Further improvements to data traffic during migration is also possible by sending only the parts of the heap that has been modified

Alternative Architectures

- Micro-cloud for offloading
 - Form a transient cloud using mobile devices in the vicinity
- Edge Cloud for offloading
 - Use the routers and/or other nearby servers to act as the compute resource
- Fog Computing (Mobile Fog)
 - Use ubiquitous sensor devices (Internet of Things) to act as a platform for unlimited computing power

Micro-Cloud Architecture

Assumption is that a mobile device can only connect to other devices in the vicinity Computation offloading can be performed among a set of mobile devices \rightarrow Mobile Device Cloud


Goal is to maximize the lifetime of the collection of the mobile devices

- Ported MapReduce framework to execute on Mobile Device Cloud
- Has been shown to be useful for other latency sensitive applications

Edge Cloud or Cloudlet

Goal is to reduce the latency in reaching the cloud servers Use servers that are closer to the mobile devices \rightarrow use cloudlet A **cloudlet** is a new architectural element that arises from the convergence of mobile computing and cloud computing. It represents the middle tier of a 3-tier hierarchy: mobile device --- **cloudlet** --- cloud

HOT-T-CS 2015: Mobile Cloud Computing ©Pradipta De

Fog Computing

- Fog computing is an architecture that uses one or a collaborative multitude of end-user clients or near-user edge devices to carry out a substantial amount of storage, communication, control, configuration, measurement and management
- Fog computing is a non-trivial extension of the cloud computing

Summary

- The service oriented framework, like MBaaS, is focused mainly on application developers, less on user experience
- MCC focuses more on user experience
 - Lower battery consumption
 - Faster application execution
- MCC architectures designs the middleware to partition an application execution transparently between mobile device and cloud servers
- Alternative architectures focus on efficient use of computing resources in the user's environment

References

- 1. Shiraz, Muhammad, et al. "A review on distributed application processing frameworks in smart mobile devices for mobile cloud computing."*Communications Surveys & Tutorials, IEEE* 15.3 (2013): 1294-1313.
- 2. Cuervo, Eduardo, et al. "MAUI: making smartphones last longer with code offload." *Proceedings of the 8th international conference on Mobile systems, applications, and services*. ACM, 2010.
- 3. Chun, Byung-Gon, et al. "Clonecloud: elastic execution between mobile device and cloud." *Proceedings of the sixth conference on Computer systems*. ACM, 2011.
- 4. Gordon, Mark S., et al. "COMET: Code Offload by Migrating Execution Transparently." *OSDI*. 2012.
- 5. Yang, Seungjun, et al. "Fast dynamic execution offloading for efficient mobile cloud computing." *Pervasive Computing and Communications (PerCom), 2013 IEEE International Conference on*. IEEE, 2013.
- 6. Shi, Cong, et al. "Serendipity: enabling remote computing among intermittently connected mobile devices." *Proceedings of the thirteenth ACM international symposium on Mobile Ad Hoc Networking and Computing*. ACM, 2012.
- 7. Li, Yujin, and Wenye Wang. "Can mobile cloudlets support mobile applications?." *INFOCOM, 2014 Proceedings IEEE*. IEEE, 2014.